Preprint (2005-05-25), arXiv:math.CO/0505548. ON q-EULER NUMBERS, q-SALIÉ NUMBERS AND q-CARLITZ NUMBERS

نویسندگان

  • Zhi-Wei Sun
  • HAO PAN
  • ZHI-WEI SUN
چکیده

for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q), this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerate of C2n(q), this extends Carlitz’s result that 2 divides the Salié number S2n and the numerate of the Carlitz number C2n. For q-Salié numbers we also confirm a conjecture of Guo and Zeng.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acta Arith. 124(2006), no. 1, 41–57. ON q-EULER NUMBERS, q-SALIÉ NUMBERS AND q-CARLITZ NUMBERS

for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q); this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerator of C2n(q); this extends Carlitz’s result that 2 divides the Salié number S2n and the numerator of the Carlitz number C2n. Our result on q-Salié numbers implies a conjecture...

متن کامل

Arith . , in press . ON q - EULER NUMBERS , q - SALIÉ NUMBERS AND q -

for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q); this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerate of C2n(q); this extends Carlitz’s result that 2 divides the Salié number S2n and the numerate of the Carlitz number C2n. Our result on q-Salié numbers implies a conjecture o...

متن کامل

q-EULER AND GENOCCHI NUMBERS

Carlitz has introduced an interesting q-analogue of Frobenius-Euler numbers in [4]. He has indicated a corresponding Stadudt-Clausen theorem and also some interesting congruence properties of the q-Euler numbers. In this paper we give another construction of q-Euler numbers, which are different than his q-Euler numbers. By using our q-Euler numbers, we define the q-analogue of Genocchi numbers ...

متن کامل

2 Hao Pan and Zhi

for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q), this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerate of C2n(q), this extends Carlitz’s result that 2 divides the Salié number S2n and the numerate of the Carlitz number C2n. For q-Salié numbers we also confirm a conjecture of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005